Mobile robot path planning using artificial bee colony and evolutionary programming

نویسندگان

  • Marco A. Contreras-Cruz
  • Víctor Ayala-Ramírez
  • Uriel Haile Hernández Belmonte
چکیده

In this paper, an evolutionary approach to solve the mobile robot path planning problem is proposed. The proposed approach combines the artificial bee colony algorithm as a local search procedure and the evolutionary programming algorithm to refine the feasible path found by a set of local procedures. The proposed method is compared to a classical probabilistic roadmap method (PRM) with respect to their planning performances on a set of benchmark problems and it exhibits a better performance. Criteria used to measure planning effectiveness include the path length, the smoothness of planned paths, the computation time and the success rate in planning. Experiments to demonstrate the statistical significance of the improvements achieved by the proposed method are also shown. © 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Chaotic Bee Swarm Optimization Algorithm for Path Planning of Mobile Robots

This paper is based on swarm intelligence and chaotic dynamics for learning. We address this issue by considering the problem of path planning for mobile robots. Autonomous systems assume intelligent behavior with ability of dealing in complex and changing environments. Path planning problem, which can be studied as an optimization problem, seems to be of high importance for arising of intellig...

متن کامل

Optimization Algorithms Incorporated Fuzzy Q-Learning for Solving Mobile Robot Control Problems

Designing the fuzzy controllers by using evolutionary algorithms and reinforcement learning is an important subject to control the robots. In the present article, some methods to solve reinforcement fuzzy control problems are studied. All these methods have been established by combining Fuzzy-Q Learning with an optimization algorithm. These algorithms include the Ant colony, Bee Colony and Arti...

متن کامل

The State of Art on Navigational Algorithm for Path Optimization of a Mobile Robot

Mobile robots are vital for automation industries, surveillance and mapping, hazardous operation like nuclear plants, landmine detection etc. The path of such robots is controlled by a navigational algorithm. Several algorithm have been proposed and tried out for navigation of an autonomous mobile robot (AMR) around the globe .Some of these determine the path which is feasible to reach the dest...

متن کامل

Research on the mobile robots intelligent path planning based on ant colony algorithm application in manufacturing logistics

With the development of robotics and artificial intelligence field unceasingly thorough, path planning as an important field of robot calculation has been widespread concern. This paper analyzes the current development of robot and path planning algorithm and focuses on the advantages and disadvantages of the traditional intelligent path planning as well as the path planning. The problem of mob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2015